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In this paper, we study the elliptic curve E,,(Ap), with Ap the lo-
calization of the ring A = Fyley,...,e,] where eje; = e; and eje; = 0
if i # j, in the maximal ideal P = (ey,...,e,). Finally we show that
Card(E,(Ap)) = (Card(E,p(IF,))—3)" + Card(E, y(IF,)) and the execu-
tion time to solve the problem of discrete logarithm in E, ,(Ap) is Q(N),
sch that the execution time to solve the problem of discrete logarithm in
Eyp(F,) is O VN). The motivation for this work came from search for
new groups with intractable (DLP) discrete logarithm problem is there-
fore of great importance.

1 Introduction

The elliptic curves are a very fashionable subject in
mathematics. They are the basis of the demonstra-
tion of Fermat’s great theorem by Andrew Wiles, it
was proposed for cryptographic use independently by
Neal Koblitz[1] and Victor Miller in 1985, claim that el-
liptic curve cryptography requires much smaller keys
than those used in conventional public key cryptosys-
tems, while maintaining an equal level of security. In
2008, Virat introduced the elliptic curves over local ring
F,[e] =, [X]/(X?)[2], and a proposed a new public key
cryptosystem which is a variant of the ElGamal cryp-
tosystem on an elliptic curve, in 2013 Chillali general-
ized the Virat result for the ring IF, [e] = IF,[X]/(X") [3].
Chillali and Abdelalim constructed a ring IFp[el, e,e3],
defined an elliptic curve over E, ,(IF,[e}, €5, €3]) and they
showed that Card(E,;(IF,[ey, e;,e3])) > (Card(E, ,(IF,)) -
3)" + Card(E, () [4].

In this work we will generalize the construction
of IFp[el,ez,e3] to IFp[el,..,en], but not a local ring to
define a group law in IFp[el,..,e,,],we localized the
ring IF,[e;,..,e,] in a maximal ideal, and we give it
a group law and show that Card(E,(FE,[e,..,e,])) =
(Card(E,p(IF,)) — 3)" + Card(E,(IF,)), then shows the
discrete logarithmic complexity is Q(N) Such that

N = E, ;(IE,) by using the attacks baby step/giant step
and p—Pollard.

Let p be an odd prime number and # be an integer
such that n > 1. we consider the ring A, = F,[ey,...,e,] =
lag+aie; +..+aye,/ag, ay,...,a, €Iy, eje; = e; and eje; = 0
if i = j}. IFp[el,...,en,] is vector space over F, with basis
(1,eq,...,e,,). We have
X+Y =(xo+70)+(x1 +x1)ey +... + (x, + v )e, and XY =
to+teqg +...+t,e, with:

fo =XoYo lf i=0

ti = XiYo +x0y;i +X;p; if i#0
Proposition 1. Let X = xg+x1ey +... + x,¢, € Fyley, ..., €]
then X is invertible if and only if xy # 0 and x; # —x for
alliefl,..,n}.
Proof. Let X = xg+xje+...+x,¢, € F[ey,...,e,] a invert-

ible element, there Y = yg +y ey +... + y,¢, € By ley, ..., €]
such that X.Y =1, this implies that

XoYo = 1 Zf i=0

XiVo+ XV +x;9; =0 if i=0
therefore, xg # 0 and x; # —x( for all i € {1,..., n}.
In this case:

Yo =Xp if i=0
yi = —(xo+x) xixg! if P20
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The other since is evident.

Proposition 2. The ideal P = (ey,...,e,) is a maximal
(prime) of a ring le[el,...,en].

Proof. We have IFp[el,...,
maximal.

e,]/P ~ T, is a field, there P is

Proposition 3. Let S = Fy[ey,...,e,] =P = {sg +sjey +... +
snen/so € By, 50 = 0}. Then the localzzed ofIF [e1, .. ,en] in
Pis:
_ (Xptxjep+...+x,€y,
Ap = {—50+51€1+.--+Snen /X0 X15ev0s X1y S0, 515+ Sy € Iy, S0 # 0}
Xo+X1€1 +... +x,€
0 T /X0, X150y Xy ST v Sy € B )
1+s1e1+... +5,¢,

Ap is a local ring its maximal ideal is

_ X1e1+...+x,e, .
= {—1+sle1+...+s,le,,/x1'""xﬂ'sl""’Sﬂ € IF,} and the residual
field is K ~ IF,.
Proposition 4. The homomorphism :
7 Ap — [,
XotXx1€1+...+x,€,
R T s e A S

1+sie1+...+s,ey

is a surjective homomorphism of rings.

2 The Elliptic Curve over the ring
Ap

Let ne N*, A = IFp[el,...,en], p a prime number p > 5,
P = (eq,...,e,) and Ap the localized of A in P.

Definition 1. An elliptic curve over ring Ap is curve that
is given by such Weierstrass equation:

Y2Z =X3+axz*+bv23

with a,b € Ap and 4a® + 27b? is invertible on Ap, and the
reduction over E, is

Y27 = X3+ n(a)XZ? + n(b)Z3

E.p(F,) ={[X: Y : Z] € PX(F,)/Y?Z = X> +aXZ* + bZ>}
E,p(A)={[X:Y:Z]eP*(A)/Y?Z = X? +aXZ* +bZ3)
E,p(Ap)={[X:Y:Z]€P*(Ap)/Y?Z = X° +aXZ* +bZ3)

Theorem 1. The mapping

(P : Ea,b(A)
[x:p:z]

Eub

RN (
Ty
— [f:7:

~

]

>—|N 'T’

is injective.

Proof. Let [x:v:z],[x" :y":2'] € E ;(A)
Suppose that [x:y:z]=[x":y : 2]

= 3 € A such that (x',9,2") = M(x,9,2)

= (x,y,2") = (Ax, Ay, A2)
=>x'=Ax,y’=Ayand z' = Az

> ¥ =ap F = and ¥ =25

Then [ : 4 : F]=[AF: A7 AF]=[F:7:7]
we deduce that ¢p([x:y:z]) = p([x" : 9" :2'])
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Then ¢ is well defined.
. f:A — Ap
Note that mapping x > %

We deduce ¢ is injective.

is injective.

Theorem 2. Let a,b € IF,, the mapping
¢ ( r) Ep(A)
[51 ] [x5253 1 Y5153 : 2515, ]
is surjective.
Proof. Let [3-: Sl =

Suppose that [i : 5 : 53

Then 31 € A}, such that (X—,, ,z—) = /\(i,l,i)
51

- v _ 3.

:Si A % =152 g 53

3515253 ; :/\5253X, 515253

Then (p[x : V—é : f—z] (p[slszs3q : 5152535% .5152533]
= @[Asys3x: AsyS3p 1 Asys,p2]
= (P[stsx 51539 © 51522]
=plE: L 2]
Then ¢ is well defined.
Let [x:p:z] € E,p(A), we have p[¥: ¥ : 2] = [x:p:z].
Finally the mapping ¢ is surjective.

= As1537; 515253 = As152

Corollary 1. Let a,b € I, then

Card(E,(Ap)) = Card(E

a,b(A))

Proposition 5. A Weierstrass equation is defined a ellip-
tic curve over Ap if and only if the reduction ever IF, is a
elliptic curve.

Proposition 6. Let a,b € Ap such that 4a3+27b? is invert-
ible on Ap.The set E,,(Ap) together with a special point

=[0:1:0], a commutative binary operation denoted
by +. It is well known that the binary operation + endows
the set E, ,(Ap) with an abelian group with O as identity
element.

Proof. The proof in M.Virat theses[2] page 56, based on
[5] page 117 corollary 6.6 and [6] page 63.

Proposition 7. Let P =[x:y:z]and P’ =[x":y": 2] in
E,(Ap), we have
1. if g, ,4p)(P) # g, (4,)(P’) then P+ P" =[py : q
Tl] with
yzx’z’ zxy’? —a(zx’ + x2)(zx’ — x2') + (2yy’ -
3bzz )(zx" —x2’)
Q1 = yy'(2'y - zy') — a(xyz”? - 2°x'y’) + (-2azz -

3xx’)(x'y —xy’) - 3bzz'(z'y — zy’)
=(zy'+2'y)(z'y — 2v") + (3xx" + azz’)(zx’ — x2)

2. iana,b(R)(P) = T[Ea’h(R)(P’) then P+ P’ =
with
p2 = (yy' = bz2)(x'y + xy’) + (a
zZ'y) -

[p2:q2:72]
222’ — 2axx’)(zy’ +
3b(xyz’? +2°x'y’) — a(yzx? + x*y'z’)
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q> = v?y"? + 3ax?®x’? + (-a® — 9b?)z%2"? — a®(zx’ +
xz')? - 2a’zxz'x" + (9bxx’ — 3abzz’)(zx" + x2')

ry = (yy’ + 3bzz')(zy” + 2'y) + (3xx” + 2azz")(x'y +
xy’) +a(xyz’? + 22x'y’)

Proof. The proof in M.Virat theses[2] page 57 Proposi-
tion 2.1.2. based on formulas I, II and III in the article
of H.Lange and W.Ruppert[7].

Corollary 2. The mapping

TCE(Ap) IE(AP) —> E(]Fp) isa
[x:p:2] —  [n(x): () : 7(2)]

homomorphism of groups.

Theorem 3. Leta,b e F,. Then
Card(E,p(A)) > (Card(E, ,(F,)) - 3)" + Card(E, ;(TF,))

Proof. The proof for n = 3 exist in article of A.Chilali,
S.Abdelalim[4].
For n € IN* We consider the set:

T ={[x:v:z])/y*z=x3+axz? + bz3}
{[x:0:2]/0 = x3 + axz? + bz3}
={[x:0:1)/0 = x3 + ax + b}

then Card(T) is exactly the number of the solution of
the equation x> +ax+b =0

therefore Card(T) < 3.

Let

G= Ea,n(IFp) -T
={x:y:z]€e IPz(IFp)/yzz = x3 +axz? + bz3 avec y = 0}

={[x:1:z] € P*(F,)/z = x> + axz® + bz}

={lx:1:z] € P*(,)/[x:1:z] € E, ,(IF,)}
therefore Card(G) > Card(E, ,(IF,)) -3
We consider the mapping:

a:G" Eqp(A)
(xi:pizzD)iZ — [Xiloxiei:1: X[ zie]

We have:

—

n n
3 3
() xje) :Z(xiei)
i—0 =0
n n
2 2
() zie)? =) (zie;)
i=0 i=0
n n n
2 2
a( ) xiei)( ) ze;) :aZ(xiei)(ziei)
iz0 ic0 io1

Since [x; : 1 : z;] € E, ,(IF,) then z; = x? + axizi2 + bz?. Itis
clear that :

z;e; = (x,-ei)2 + a(xiei)(ziei)z + b(z,-ei)3, Viell,..,n}
n n n n

_ 3 2 3
Zziei = Z(xiei) + QZ(xiei)(ziei) +b Z(Ziei)
i=0 i=0 i=0 i=0
www.astesj.com

n n n n n

Zziei = (inei)3 + u(inei)( zie;)* + b(ZZiei)3

i=0 i=0
we deduce that:

n n
[ine,- :1: zie;] € E;p(A)
i=0 i=0
« is injective. Then
Ea,n(IFp) c Eu,b(A)

a(G") C Ep(A)

and E, ,(F,) Na(G") ={[0:1:0]}
We result that

Card(E,,(A)) 2 Card(a(G")) + Card(E,,,(F,)) - 1
Since a is injective, then
Card(G") = Card(G)" > Card(E, ,(E,) - 3)"
we deduce that:

Card(E,;(A)) > Card(E, ,(F,) - 1)" + Card(E, ,(IF,))

Corollary 3. Let a and b two elements of IF,. Then
Card(Ea,b(AP)) > (Card(Ea,b(]Fp)) - 3)n + Card(Eu,b(]Fp))

Proof. In Corollary 1 Card(E,;(Ap)) = Card(E,;(A)),
and in Theorem 3

Card(E,(A)) > (Card(E,(E,)) —3)" + Card(E, (E,))

we deduce that:

Card(Ea,b(AP)) 2 (Card(Ea,b(IFp)) - 3)n + Card(Eu,b(]Fp))

3 The discrete logarithm problem:
complexity and security

The discrete logarithm problem for G may be stated as:
Given g € G and h €< g >, find an integer x such that
h=g* and ord(g) = q a prime number.

Baby-Step/Giant-Step Method: The idea behind
the Baby-Step/Giant-Step method is a standard divide-
and-conquer approach found in many areas of com-
puter science. We write

X =xo +x1[q]

Now, since 0 < x < g, we have that 0 < xp,x; < [gq] We
first compute the Baby-Steps

g g, for0<i<[q]

The pairs (g;, 1) are stored in a table so that one can eas-
ily search for items indexed by the first entry in the pair.
This can be accomplished by sorting the table on the
first entry, or more efficiently by the use of hash tables.
To compute and store the Baby-Steps clearly requires
O([q]) time and a similar amount of storage.

We now compute the Giant-Steps h; «— h.g7i14l for
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0<j<[q],and try to find a match in the table of Baby-
Steps, i.e. we try to find a value g; such that g; = h;. If
such a match occurs we have x5 =i and x; = .

since, if g; = h; , we have g =h.giml

i.e g”jqu =h

Notice that the time to compute the Giant-Steps is at
most O(+/q).

Hence, the overall time and space complexity of the
Baby-Step/Giant-Step method is O(/q)[8].
Pollard-Type Methods: We define a partition G = Sy U
S1US, and the function

(hy,a,a+b mod(q)) if ¥€S5
f(w,ab)= (yz, 2a mod(q),2b mod(q)) if yeS;
(89,a+1 mod(q),b) if ye$,

Note that if y = g?h’, Then, taking (z,k1) = (y,a,b),
7= okp!

g
Then, it is possible to iterate f until finding two identi-
cal results: (y,a,b) = (z,k,1) and

gahb =p=2z :gkhl :>gl—k _ hl—b
As ¢g* = h, we have
g * =" = x(1-b) = (a— k) mod(q)
if I - b Is invertible modulo g, We find the solution
x=(a-k)(I-b)"! mod(q)
The time and space complexity of the method is O(/q).

Let Card(E,,(Ap)) = M and Card(E,;)(F,) = N
n>3,and N > 7[8].

Theorem 4. The time for solving DLP in E, ,(Ap) is O(N),
and O( \/N)for solving DLP in E, ,(IE,).

Proof. Its clear that for solving DLP in E,,(FF,) is
O( VN). We have the time for solving DLP in E, ;,(Ap) is
O(VM). And: M > (N -3)"+N

=M >(N-3)>+N >N?because n>3 and N >7

= \/A_/Iz N

= VM = Q(N)

Then the time complexity for solving DLP in E, ;,(Ap) is
Q(N) Instead of O( VN) for E;p(IEy).

Example:
Letn=3,p=5a=1land b=1.
E;1(F5)={[0:1:0],{0:1:1],[0:4:1],[2:1:1],[2:4:
11,[3:1:1],[3:4:1],[4:2:1],[4:3:1]}
We have Card(E;;(IF5)) = 9. Then
Card(Ey,1(Ap)) = (Ey,1(IF5) — 3)> + Card(E, 1 (IF5)) = 225
The following table gives the difficulty of calculating in
A =Tsleq,e;,e3], and in E; (A) as a function of the IF5
addition and the multiplication.

Operations +inlF5 | xin [Fy
+in IF5[€1,€2,€3] 3 0

X in 1F5[€1,62,€3] 6 10
+in Eq 1 (Bsler, €5, e3]) | 582 870
+in EI,I(IFS) 6 4

Note that the computational difficulty in
E11(FF5[eq, e5,e3]) is much more difficult than in E; 1 (IFs).

www.astesj.com

4 The fundamental algorithms

4.1 Algorithmsin A

Algorithm 1 sum_1(p)

Input:(X = (xg, X1,..,X),Y = (Y0, V1, V));
Output:(Z =X+Y);

for i = 0 to n do:

Zi =X +Yi;

end for;

return Z = (2,21, ..., 2, );

end;

Algorithm 2 prod_1(p)

Input:(X = (xg, X1, .. X),Y = (Y0, V1, Vir));

Output:(Z = X.Y);

Z0 = X0-Y05
fori=1tondo:

Zj = XYi T XiYi + XiYo;
en for;

return Z = (z9,21,...,2,);
end;

Algorithm 3 if_invertible_1(p)

Input:(X = (xg, x1,..., X))
Output:(true,false)
fori=1tondo
if (xg +x; == 0 mod(p) or xq = 0)
return false;
end if
end for;
return true;
end;

Algorithm 4 invertible_1(p)

Input:(X = (xg, x1,...,X3,));
Output:(Z = X‘l);

if (if _invertible_1(X) == false);
print("X is not invertible);
return null;

end if;

Zp = xal;

fori=1tondo

z; = —(xo +x;) ' xixgt;
end for;

return Z = (zg, 21, ...,Z,);
end;

Algorithm 5 projection_1(p)

Input:(X = (xg, x1,.... X,,));
Output: xy;

return x;

end;
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4.2 Algorithms in Ap

Algorithm 6 prod_2(p)

Input: (X = ((x0, X1, X), (1,51, ...,5,)),
Y= ((}’0:3)1»-~-r3/n): (L1, ty))s

Output: XY;

A =pod_1((x0, X1, Xu), (Y0, Y15+ V)5

B=pod_1((1,51,...,5,), (1, t1,.... t,));

Z =(A,B);

return Z;

end;

Algorithm 7 sum_2(p)

Input: (X = ((xg, X1, %), (1,51, ...,5,))

Y= ((})O’yll""})n)1 (17 By tn)));
Output: X +7Y;
A =sum_1(prod_1((xg,x1,..., X)) (1, t1, .., 1)),
prod_L((90, 91, V) (1,510 50);
B=pud 1((1,51,...,5,), (L, t1,...., t,));
Z =(A,B);
return Z;
end;

Algorithm 8 projection_2(p)

Input:(X = ((xg, X1, .- X1), (1,51,-.,51)));
Output: x(;

return x;

end;

4.3 Algorithmsin E, ;(Ap)

Algorithm 9 projection_3(p)

Input:(X,Y, Z);

Output: (r(X), 7(Y), 7(2));

return (projection_2(X),projection_2(Y),
projection_2(Z)) ;

end;

In this algorithm the + and . in Ap for simplicity

Algorithm 10 sum_3(p)

Input: (X =(x,9,2),Y =(x",v",2'));
Output: X+Y =(p,q,71);
if projection_3(X) = prejection_3(Y) then;

p = v2x'7 — zxy? — a(zx’ + x2)(zx’ - x2’) + (2yy’ -

3bzz’)(zx’ — x2');
2.7

q=yy(z'y-2y")-a(xyz"? -2%x"y’) + (-2az2’ - 3xx/)(x"y ~

xy’) = 3bzz'(z'y — 2’);
r=(zy'+2'y)(z'y —zy’) + (Bxx" + azz’)(zx" — x2’);
else

(yy’ - bzZ')(x'y + xp ) (a®zz' - 2axx’)(zy’ + 2'y) —

(xyz +22x’y’) a(yzx’? +x2y’z’)
g=1y y 2 1 3ax?x"? + (-a® - 9b?)2%2"% — a?(zx’ + x2')
2a%zx2’x’ + (9bxx’ — 3abzz’)(zx’ + x2');

r= (yy +3bzz’)(zy" + 2'y) + (Bxx" + 2azz")(x"y + xp”) +

a(xyz’? + 22x'y’);
end if;
return (p,q,7);
fin;

2 _
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5 Conclusion

In this work we study the elliptic curves over a special
ring, and we construct a new groups with intractable
discrete logarithm problem is therefore of great impor-
tance, This allows to define more secure cryptographic
cryptosystems.
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